LGBM또한 마찬가지로 비슷한 분포를 가짐을 알 수 있다.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
fold1 = pd.read_csv('submit_fold1_test.csv')
fold2 = pd.read_csv('submit_fold2_test.csv')
fold3 = pd.read_csv('submit_fold3_test.csv')
fold4 = pd.read_csv('submit_fold4_test.csv')
fold5 = pd.read_csv('submit_fold5_test.csv')
lgbm = pd.read_csv('submit_LightGBM.csv')
# print(lgbm)
for i in range(14):
sns.kdeplot(fold1[f'Y_{str(i+1).zfill(2)}'], label='fold1')
sns.kdeplot(fold2[f'Y_{str(i+1).zfill(2)}'], label='fold2')
sns.kdeplot(fold3[f'Y_{str(i+1).zfill(2)}'], label='fold3')
sns.kdeplot(fold4[f'Y_{str(i+1).zfill(2)}'], label='fold4')
sns.kdeplot(fold5[f'Y_{str(i+1).zfill(2)}'], label='fold5')
sns.kdeplot(lgbm[f'Y_{str(i+1).zfill(2)}'], label='LGBM')
plt.legend()
plt.savefig(f'Y_{str(i+1).zfill(2)}.png')
plt.close()